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R . RELAXATION FUNCTIONS, MEMORY FUNCTIONS, RANDO! FORCES, AND ERGODICITY
IN THE ONE-DIMENSIONAL SPIN-} XY AND TRANSVERSE ISING HODELS

Ry JOAO FLORENCIO JR. and M. HOWARD LEE
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§ T+ rs toun A

]
o+ h functions and the random forces. MWe-find that the realized dynamical
et Hilbert spaces of the two models have the same structure, which
leads to similar dynamical behavior apart from a tim: scale. Based on
15
W !

B0 the infinite dimensionality of these Hilbert spaces we-also concludef

oy that Sﬁfis ergodic in both models. <ﬁ_—————~

'ty J

NN AN I } ™~
WO Lo Tt ) \
L¢3, A.’. B AN AN ?.l" AN A LA

NN

3 BB R R o TN R T O B O i AR T
AR SR A TRGLEAG G SRS, ,t» DA A ?‘r‘g‘g", Mt al .

AT RIS W
% Al
12%& e 20y ‘i?lu‘n Q.“ *‘l.h y \s




I. INTRODUCTION
The one-dimensional spin-i XY model has been of considerabie
el theoretical interest in recent years as a solvable many-body systeml.

AN The Hamiltonian of this model is.given by

o3
:i‘ H=2 l:z‘ (sistyy + Psis),y) -8 g sz, (1.1)
Ry
. where S? are spin operators, J® are the coupling constants, and B is
%ﬁ an external magnetic field. Periedic boundary conditjons are imposed,
f§ so that S;+1 = S; » where N is the total number of spins and a = X5Y 50T Z.
-;; In this paper we are concerned with two particular cases of this
gg Hamiltonian, namely, the isotropic XY model (XY) for which J*=g0Y=g, B=0,
tia and the transverse Ising model (TI) where J*=J, =0, and B=J.
:3; Although the equilibrium properties of these systems are
;23 viell knownl’z, their dynamical behavior is less well understood.
fgg There are exact results for the longitudinal time-dependent spin
el correlation functions due to Niemeijer3, and for the transverse
,g correlation functions in the 1limit of high temperature obtained by
iﬁ; . Brandt and Jacoby4 and also by Capel and Perk®. The transverse spin
5&5 correlation functions for both the XY and TI cases in the high temperature
:ﬁ; limit are found to be
i
‘: Sj(t)s)> = %—e‘Atz, - (1.2)
-:
E:i where Ao = J2 for the XY case, and J2/2 for the TI case. - The underlying
;ﬁ. reason why the two‘Egges have the same time dependence has not been
;}c recognized so far.
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In this paper we use the method of recurrence relations due to

Lee6 to study the time evolution of both the isotropic XY model and

the transverse Ising model in the high temperature limit. This method

allows one to obtain a detailed yet rigorOus_description of the

dynamics in such systems. It has been applied.to some spin models7,

8, to a classical harmonic oscillator chaing, and

to the study of velocity autocorré]ation functionslo.

to an electron gas

In the method of recurrence relations the time evolution
of a dynamical variable, e.g. S?(t), is described as an orthogonal
expansion in-a properly defined Hilbert space, where the time dependency
is placed on the expansions coefficients. By inspecting the relative
norms of the dynamical Hilbert space for each of the XY and TI cases
we can readily see why these systems are dynamically equivalent in
the high temperature limit. With relatively little effort we recover
the transverse correlation function (1.2) for these systems.  We would
also like to point out that these systems are dynamically equivalent
to the spin Van der Waals model studied by Lee, Kim, and Dekeyser7.
We conjecture that there may also be other systems with similar
dynamical behavior, for which their respective dynamical Hilbert
spaces have tha same geometry, that is, the same dimensionality
and also the same relative norms of basis vectors.

To obtain further insight in the time evolution Of these systems
we calculate some Brownian analogs of a generalized Langevin equaticn
for the spin variables, namely, the spin memory function and the
spin random force. We also discuss ergodicity in these models
based on the dimensionality of the realized Hilbert spaces of the

dynamical variables of interest.
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f§§ The arrangement of this paper is as follows. In Sec. II we review
the method of recurrence relations as well as its connections to
R a generalized Langevin equation. In.Sec. III that method is applied
KXY to the dynamical behavior of the isotropic XY model and the transverse
Ising model. Correlation functions, re]axatioﬁ functions, memory functions,
45’ and‘random forces are then obtained. Finally, in Sec. IV we summarize

o our results and discuss ergodicity in these systems.
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.i II. METHOD OF RECURRENCE RELATIONS
! Consider a one-dimensional N spin-% system described by a
o .
_! Hamiltonian H. The time evolution of an operator G is given formally by
Wy : '
2,
it .

I a(t) = e'* g(0), (2.1)
X
Iy
W
¥ where L is the Liouville operator for the system, defined by
R
iLf = [f,H] = fH - Hf. - (2.2)
vy .
W,
i Equation (2.1) can also be expressed by the expansion6
»
A2
b
g d-1
- G(t) = = a (t)f , (2.3)
b )\ \3=0 v v
K>
-
" woere fv are basis vectors of a Hilbert space A of ¢ dimensions.
‘::': The positive definite scalar product in A is defined in the hign
by
" temperature limit (T==) as
PO
3 (A,8) = 2 Tr a8* (2.4)
1
Y
2 where Z = ZN is the partition function of the system in this limit.
;?; By choosing fO = G(0) it follows that the remairing basis vactors
L4

fv can be generated by the following recurrence relation (RRI):
‘l
. s
o o fg s ALf R A . w20, (2.5)
1\
R,
»
N/
:f‘.‘lﬁ“,l e,q :‘ M i!g'b,q ." [ ) -"\..- .. ! -;c‘}‘-‘. .-.‘.' N T R S N N S S AR




where

(f ,f)
Av = '(-f—-%?v—T)- » V21, (2.6)
Ve V-

are the relative norms of the basis vectors, and by definition
f,20,85=1.
The coefficients av(t), which are also the relaxation functions,

satisfy a second recurrence relation (RRII):

B 3,01 () = -8 (8) +a_o(t) 5 w0, (2.7)

dav(t)

where av(t) —i > 33 ° 0. MNotice that due to the initial choice

fg = G(0), it follows from Eq.(2.3) that aO(O) =1, and av(o) =0
for v>1. The complete time evolution of G(t) can thus be determined
by using RRI and RRII.

A generalized Langevin equation for the operator G(t), which is

formally equivalent to the Heisenberg equation of motion, is given by

t
da(t) S detteeaele) = F(o) (2.8)

where ¢ is the memory function and F the random force. Both ¢ and F

can be readily obtained as follows. The random force is given by

F(t) = 1 b (t)F , (2.9)
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6

Tt
a (t) = of dt'b (t-t')ag(t'), vxl. (2.10)

The memory function is given simply by ¢(t) = bl(t)' The remaining bv's,
that is, b2’ b3, .es 5 are the 2nd memory func;ion, 3rd memory function, ...,
etc. The reader is referred to the original formulation of the method

of recurrence relations for the detailed derivations of the relations

contained in this sections.
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32 ITI. DYNAMICS OF THE XY AND TI MODELS

N
:, In this section we apply the method of recurrence relations
4 \‘:

- described in Sec. II to investigate the dynamical properties of
. the XY and TI models at T = =, Consider first the XY case, taking

. S? as the dynamical variable of interest. The time evolution of S?(t)
Yyl

R8s is given, according to Eq.(2.3), as

L)

“ < d-1 ‘

Sj(t) = vﬁo av(t)fv R (3.1)

?' By using RRI we obtain

S2RCTER

= oX -
where fg = Sj(O) =S

G I W)
E f = = 40355983155 = S3a1%im ¥ 250 - S1rSiSim S inSie)
fy = 203(-48%_385 ;85153 + 45Y oS5 1%y - 8555551575
' +128) 8% SusY,, + 353(_15; a1 * 385 8%y + 128%_ 8785, STk
% - 855 15Y55,15 T2 * 4515981415 - 453554155425 4a) 2
2 fo = 913505 * SSastushe - 255t Sl
S+ St sl
i - S35 TS TS 5aaSyea) * 308358015 * S 15heaS e - $5-1555540)
\: -
* - 4855851850 * S3arSTaShee) - 6083383285 15555
:.. * 52855 e ¥ 5281+ 5185185405543
b
X
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T EN TN I TN YN TR Ny Yy I v w3 w

e Y Z Z XY Y oXeZ oZ Yy . X Z oXcZ X
ak- + S(Sj-BSj-ZSj-lsjsj+1 + sj-lsjsj+15j+25j+3) 125j_zsj_lsjsj+lsj+2},
gy etc. _ (3.2)
:‘ \
e ' X
%,r Thus an excitation of Sj at t=0 will propagate through the chain
o according to Egs.(3.1 and 2). The basis vectors f, correspond ta
o . . ‘ . .
~$E excitations of clusters of spin. There is a spatial hierarchy in
-‘h
LR
Bl the fv's in the sense that as v increases, so do the boundaries of
" the region in the chain within which clusters of spins are excited.
s
*:j As we shall see later, there is also a hierarchy in the time sequence
'“if in which the vectors fv are excited, so that a true propagation of
o the initial excitation throughout the chain does indeed take place.
,;%: In addition, the length of the clusters generally increases with v.
"y
3 Motice also the appearance of "disconnected" clusters in vectors f“
RN of higher dimensions of A consisting of groups of spins in which
"
f& at least one of the spins is separated from the others, e.g. Sj—ZSj-lsj+1
W
u‘l’: i
| in f4.
ﬁ:} The relative norms A are easily obtained from Egs.(2.4,6) and
e
."n
";': (3.2). We find &, = 4, 8, = 24, 85 = 34, etc., where & = 242,
* 1
Vi The quantity A? is referred to in the literature as the basal frequency7.
i{? In the thermodynamic 1imit there is no upper bound for v, so that
J‘__-J
-;23 the dynamical Hilbert space A has infinite dimensions (d = =),
:-";
XN and the relative norms are given by
.‘.C'
K ,\‘-‘ .
a A o= vh, vo=1,2,3, ... (3.3}
B "4 \Y
R ! J
ety
, A relation similar to this was also obtained by Lee, Kim, and Dekeyser
Af .
:4;: in their study of the dynamics of the spin Van der Waals model.’
I‘ i‘
K
.
laz:
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NG,

A

S The recurrence relation (2.8) now reads
:'0,(
o (V+1)Aav+l(t) = —av(t) + av_l(t), v=0,1, 2, ... (3.4)
o |

ey It is satisfied by
'\:::: tVY 2

TS = -

3 av(t) m—exp( kAt2) . (3.5)
:Oal

These are the so-called relaxation functions.

W . . -
3 In terms of normalized basis vectors F = (f ,f ) g R
:,"v‘\," - v v'iv v
2}3 the time evolution of S}‘(t) is given by

4 ®
0 sX(t) = © A (t)F , (3.6)
A \.f J _0 \Y) A"
J"\.__ V=
e

wnhere
e i)
o A(t) = 2Lt ep(at2) | (3.7)

_- (vi)*
i‘
A
::ﬁ This quantity satisfies the Bessel equality
W

A
‘i»n

o .

¥ ER(t) =7 (3.8)
o v=0
R
'-‘.'-
NN That is, the length of the vector Sg(t) in the dynamical Hilbert space
:tg is an invariant of 1:1'me.6’10 In Fig.l we show the time dependent
hat ;
::}:, probabilities A\Z)(t) (normaiized to %) in early stages where Sg(t) samples
.‘." s
B the space of the lower basis vectors. MNotice that due to the
,‘E pre-exponential factor in Av(t), the basis vectors corresponding to
NS
';-;-\.' the lower dimensions of A are more likely to be initially excited
RN

o before those of higher dimensions. In addition, each of the
s
' A, B R B e e B A A D N N R

------
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Ve
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Lt
-th
probabilities Aé(t) decay in a Gaussian manner, so that a somewhat 3: é
N S
localized, yet spreading, group of basis vectors are being excited g ".}',
AR
as time progresses. This .correspond§ to a. propagation of the initial ':‘-.::'
excitation throughout the spin system. This propagation, however, w;f:
is to be understood in a quantum mechanical context, since the Bessel w‘%;
equality (3.8) holds for all times. That is because actually all the fv's :-;{
~ 0.0
are excited for t>0 due to the instantaneous nature of the coupling ‘*. J
constant. However, at any given t the probability of excitation is :.:.",j
- tigdet
significant only for a fraction of the f 's. On the other hand, it can fi‘:';’:,!
' RHXY
be seen from Eq.(3.1) that the maxima of the amplitudes Aﬁ(t) are gﬁ!ﬁj
located at v = At2. In the spin chain, that corresponds to the ,_,.
K
boundaries j:v of the region in which the significant excitations S
. S
are taking place. Sead]
The transverse correlation function can now be obtained as follows: ._.':'L

S,
o0
X X = (X Xy - 1 R
<SJ.(t)SJ.(O)> (SJ.(t),SJ.) iy ao(t) o
b'.‘:“ 3
= %exp(-lsAtz) 0

o
N
= %exp(-dztz) s (3.9) .h'
4,5 5
which agrees with the results found in the literature.’ :;Z{::
RAREA
Consider now the TI case. The time evolution of the operator ~.‘: '-
S} is represented by T
'*-_‘{".
i.\‘-f'"‘,
« d-1 o
Se(t) = ¢ a' (t)f" , (3.10) \
J = v \Y Lty o

v=0 —
v:.o\.“‘\::
5
q.::'::‘
Y
(RS
“':' """.l,.!‘t..:"‘ ‘:'.‘r\ua‘!,n‘.‘-' ‘a""r"“l "*l "" :‘" n . 5'\ DO X ‘-l "u - o \’A\ """""" : e




11
where ', = S?(O) = Sg » and primed variables are used to distinguish
the notation here from that of the XY case. By using RRI we obtain
o |
M P = *’5’5 ’
) Vo= _ov2(eX <2 ZX
v f 2 2J (Sj-lsj + sjsm) s
f';‘,l"
R V= 293(sY .S2 + 45% sYsX zcy
.0:::: f 3 ZJ (Sj-lsj + 4Sj-lsjsj+1 + Sij+1) »
l“:" .
Vo= oagsfeX o2 oZ _ oeX XeX  _ 2eX o¥e¥  _ ac¥ o¥eX
. f 4 4y (Sj-zsj-lsj ZSj_ISjS\j+1 35‘]._153.5‘],'_1 3SJ.__]‘SJ.SJ.+1
ol
L} .!
S ZeZ X ~
§:;:: + sjsj+lsj+2) , etc.' | . (3.11)
ros In spite of the basis vectors f'v here are different from the basis
X))
%‘3 vectors fv of the XY case, the relative norms assume the same form,
H A)
g3 Al =, v=1,2,3, ..., (3.12)
0
vy
] where A'v = J2, This leads to the same dynamical behavior as with the
‘;“‘ XY model and the spin Van der Waals model. In particular, the spin
:?:,_ correlation function for the TI case is found to be
._‘:'b
. X[ pyeX 21 242 )
Ah <sj(t)sj(o)> =7 exp(-1%J2t2) , (3.13)
e
W .
“::: which also agrees with previous r'esu'lts.4’5 Notice that the basal
IR0 frequencies A% and A'lﬁ of these models can be made equal by rescaling
H:Q‘.
.*::.:. the coupling constants. Conversely, one can say that the XY model i
0
o and the TI model are dynamically equivalent with respect to the time |
S evolution of Sg(t). (
\::
H

BT A R LT 4 X 2 aANY 4 AARA
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Consider now the Brownian analogs of the generalized Langevin

equation, EQ.(2.8). The spin random forces for the XY and TI cases

i are given respectively by
F(t) = b NS ' (3.14a)
v=l V
and
F'(t) = z b* (t)f' (3.14b)
v=l

with f  and f'v given by (3.2) and (3.11). The memory functions bv(t)

‘ can be expressed as

: b,(t) = z pelm-v+1) c t" (3.15)
m=0

with a similar expression for b' (t) involving a'. The coefficients C;

are obtained recursively by

n 2p ptr , (_zn
: L LL_ p) 2n+v -r CZ(n p)+\’ 1 znn'v. , n=0,1,2,... (3.16)

: p=0 r= o 2Pp!

The memory function ¢(t) of the XY model is found to be

2 244 346 448 5410
bo(t) = 1 - 2882 , 10A2t% 74316 . 7062%t8 _ 861215t

2! 7! 6! S T A
(3.17)

o(t)

- -
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A similar expression for the memory function of the TI model is
obtained from Eq.(3.17) by the replacement A + A'. The remaining
memory functions bv(t) were first calculated by Lee et a17, and

their results are reproduced here in Fig.2. In that figure, A is

taken to be unity for convenience. From the generalized Langevin
equations one can see now that S;(t) evolves in time modulated by
the memory function ¢. The random force F, with components along
the higher dimensions of the dynamical Hi]bért space (v = 1 + =)

acts to pull the time evolution away from the basal plane onto

higher reahhes of A.
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IV. CONCLUSIONS

We investigated the time evolution of a tagged spin variable S;(t)
in the one-dimensional S=J isotropic.XY model and transverse Ising model
at infinite femperature by using the method of recurrence relations.
This method lends itself to a detailed description of the dynamical
behavior of these systems, whether by looking at the propagation of
the excitations along the spin chains, or by examining the effects
of the memory funcions and the random force; of a generalized Langevin
equation. The time evoluticn of,Sg(t) is given as an orthogonal
expansion 5n a properly defined Hilbert space in each of these systems.
The relative norms of the basis vectors in each of the XY and TI models
have the same structure, resulting in similar dynamical behavior for Sg(t)
in both cases. We obtained expressions for the transverse spin correlation
functions, relaxation functions, memory functions, and random forces
for these systems. These results are valid in the thermodynamic limit
(N = =).

For a finite system, there is always an upper bound for the
dimensionality d of the realized Hilbert space and, as a consequence,
only periodic solutions are admissible. In that case the system will
eventually return to its initial state with an excitation localized,
say, at site j. Thus, for a finite system, there can never be
an equipartition of energy and the system is non-ergodic. On the
other hand, for infinite systems the dimensionality of the Hilbert
space has no a priori constraints on its upper bound. The dimensionality
of the Hilbert space depends on the model as well as on the dynamical

variable under consideration.11
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As we have seen, the Hilbert space of Sg(t) has infinite dimensions

in both XY and TI cases discussed here. This leads to a propagation

i}&: of an excitation throughout the spin chain, whose propability
.-:a.".q :
ﬁ;ﬂ amplitudes decay with time in a Gaussian fashion. The system
o under consideration never returns to its initial state, thus the
g ) |
@53 process is irreversible. As t + =, having an infinite number
Shed
< of basis vectors, Sg(t) must sample all reaches of the Hilbert space
o and it is ergodic in both the XY and TI models. This conclusion is in
ol , '
:ﬁ@i accordance with the results of Perk et all? for the XY case. In the
ey ‘ .
iy
gﬁ? case where the dynamical variable of interest is a conserved quantity,
KTXy. the dimensionality of its Hilbert space is d=1, and that variable
a‘ pt.g
,::f is non-ergodic. That is the case with the magnetization in the
A .
DA XY mode112’13. We are currently investigating the formal aspects
N of the connection between ergodicity and dimensionality of realized
A, $ P
?‘ : dynamical Hilbert spaces. Our results will be reported in a forthcoming
l.‘
e paper.
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FIGURE CAPTIONS

Fig. 1 Probabilities Aﬁ(t) Vs timegsg(t) samples the basis vectars f .

The time is given in units of the basal frequency A%.

Fig. 2 Memory functions bv(t) vs time for both XY and TI models.

The basal frequencies A;s and A'35 are taken to be unity in

both axes.
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